Step 3: Plot the trend of min vt value over time

plt.figure(figsize=(16,8),dpi=80) vt0_min_all=[] for k in dir: files=os.listdir(path+k) vt0_min=[] ### list store of min vt value of each dir slot_name=[] vt_value_flt_wo0=[] for p in slotn: a='zero pattern vth worsest case:' for i in files: with open(path+k+'\'+i,'r',encoding='gb18030',errors='ignore') as file: data=file.readlines() for n in data: if a in n: vt_value_str=data[data.index(n)][31:-2] vt_value_flt_wo0.append(vt_value_str) vt0_min=[float(i) for i in vt_value_flt_wo0] vt0_min_all.append(min(vt0_min)) plt.plot(vt0_min_all,marker='o',label='min vt value') plt.xticks(np.arange(0,len(dir),1),dir,rotation=90) plt.ylabel('min vt value') plt.xlabel('time') plt.title('Trend of min vt value over time') plt.legend() plt.tight_layout() plt.grid(b=bool) plt.savefig(path1+'min_vt_value_trend.png') plt.close(

import numpy as np import matplotlibpyplot as pltimport osimport mathimport time### step1: 按照每一片画出不同目录时间节点的vt 值的分布path=readvtlog#path=vt-32Mb-skyworthpath1=readvtresultsdir=abnorm=vrd=60files=oslistdi

原文地址: https://www.cveoy.top/t/topic/haHk 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录