C# LuceneNet 40 查询内容精确度自定义排序
要实现自定义排序,您需要实现自定义评分器。评分器可以根据您的需求为每个匹配文档分配一个分数。以下是一个示例评分器,根据查询的精确度和文档的长度为文档分配分数:
public class CustomScorer : DefaultSimilarity
{
public override float Coord(int overlap, int maxOverlap)
{
return (float) overlap / maxOverlap;
}
public override float Tf(float freq)
{
return (float) Math.Sqrt(freq);
}
public override float LengthNorm(FieldInvertState state)
{
return state.Boost / (float) Math.Sqrt(state.Length);
}
public override float Idf(long docFreq, long numDocs)
{
return (float) Math.Log(numDocs / (double) (docFreq + 1)) + 1;
}
public override float Slope(float freq)
{
return (float) Math.Sqrt(freq);
}
public override float ScorePayload(int doc, int start, int end, BytesRef payload)
{
return BitConverter.ToSingle(payload.Bytes, payload.Offset);
}
public override Explanation IdfExplain(CollectionStatistics collectionStats, TermStatistics termStats)
{
long df = termStats.DocFreq;
long docCount = collectionStats.DocCount == -1 ? collectionStats.MaxDoc : collectionStats.DocCount;
float idf = Idf(df, docCount);
return Explanation.Match(idf, $"idf(docFreq={df}, docCount={docCount})");
}
public override Explanation TfNormExplain(FieldInvertState state)
{
float boost = state.Boost;
float lengthNorm = LengthNorm(state);
return Explanation.Match(boost * lengthNorm, $"tfNorm, computed as boost * lengthNorm, with boost={boost}, lengthNorm={lengthNorm}");
}
public override Explanation SlopeExplain(float freq)
{
float freq2 = Slope(freq);
return Explanation.Match(freq2, $"tf, computed as sqrt(freq), with freq={freq}");
}
public override Explanation ScorePayloadExplanation(IndexSearcher searcher, String field, int doc, int start, int end, BytesRef payload)
{
float payloadScore = ScorePayload(doc, start, end, payload);
return Explanation.Match(payloadScore, $"scorePayload(...) = {payloadScore}");
}
public override float ComputeNorm(FieldInvertState state)
{
return state.Boost / (float) Math.Sqrt(state.Length);
}
public override float QueryNorm(float sumOfSquaredWeights)
{
return (float) Math.Sqrt(sumOfSquaredWeights);
}
public override float Coord(int overlap, int maxOverlap, float queryBoost)
{
return Coord(overlap, maxOverlap) * queryBoost;
}
public override float ScoreDoc(Searcher searcher, int doc, float freq)
{
Document d = searcher.Doc(doc);
string text = d.Get("text");
Query query = searcher.GetIndexReader().GetQuery();
float queryLength = query.Match(text).Length;
float docLength = text.Length;
float score = base.ScoreDoc(searcher, doc, freq);
score *= Math.Min(queryLength / docLength, 1);
return score;
}
}
然后,您可以将此评分器与查询一起使用,如下所示:
var searcher = new IndexSearcher(index, true);
searcher.Similarity = new CustomScorer();
Query query = new TermQuery(new Term("title", "lucene"));
TopDocs docs = searcher.Search(query, null, 10);
foreach (ScoreDoc scoreDoc in docs.ScoreDocs)
{
Document doc = searcher.Doc(scoreDoc.Doc);
Console.WriteLine($"Title: {doc.Get("title")}, Score: {scoreDoc.Score}");
}
在此示例中,我们使用 TermQuery 查询匹配标题中包含 "lucene" 的文档,并使用自定义评分器为每个匹配文档分配分数。评分器使用 ScoreDoc 方法计算文档的初始分数,然后将其乘以查询精确度(即查询的长度与文档长度的比率)。最后,我们按降序排序匹配文档,以便最高分的文档排在前面。
原文地址: https://www.cveoy.top/t/topic/bL3j 著作权归作者所有。请勿转载和采集!